If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2-81=0
a = 3; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·3·(-81)
Δ = 972
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{972}=\sqrt{324*3}=\sqrt{324}*\sqrt{3}=18\sqrt{3}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{3}}{2*3}=\frac{0-18\sqrt{3}}{6} =-\frac{18\sqrt{3}}{6} =-3\sqrt{3} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{3}}{2*3}=\frac{0+18\sqrt{3}}{6} =\frac{18\sqrt{3}}{6} =3\sqrt{3} $
| 12x-3=-54 | | 2√7+x=3x-10 | | 97=x^2+7 | | 980=2x+2(2x+25) | | 3(2x)/4=38 | | -7q+13=-6q | | -6(k-5)=-3(k+12) | | -f-10=3f+10+8 | | 5/18=5/6b | | -7+a/2=-3 | | 12x^2-24x+24=0 | | (2x+1)(3x-2)^2(2x-7)=0 | | 16-b=-1 | | -3-7r=-6r-10 | | -(n-1)=-3 | | 13#=2(x-5)-2 | | 20=k/3 | | -10-6m=-5m | | x-8/5=x/6 | | -9-3y-2=7-y | | 980=6x-50 | | 7^5xx7*3=512 | | 980=x+2(x+25) | | (7x-2)(3x+1)=0 | | 3^y+4=11 | | -15g=3+11-16g | | 6(6-5x)=96 | | 5(-8-x)=-60 | | 9x3+-9x2+-1x-1=0 | | -x-4=-2-3x | | 2x-255=180 | | x²-6x-16=0 |